chapter four

Expressions
d Statements

a

=

n Chapter 3, we talked about expression evaluation

and its close relationship to data values and

variables. Most JavaScript statements contain an

expression of some kind that requires evaluation.
At the heart of these expressions are operators and
function calls.

In this chapter, we'll

Sure as 2 Define the terms “expression” and “state-
ment.”
one plus one 2> Look at the various types of operators you can

use in expressions, including

string operators.

arithmetic operators.

assignment operators.

comparison operators.

logical operators.

the conditional operator.

Introduce functions.

Learn how to declare a function with and
without parameters.

2 Learn how to return a value from a function.

istwo . ..

—Mac Davis

R R R

R

104

Expressions vs. Statements 2 105

2 Study and apply the established order of operations.
Let’s get started by taking a closer look at expressions versus statements.

What Is an Expression?

Although we should, by now, have a good feeling for what an expression is, we have yet to
define it. An expression is any valid set of literals, variables, operators, function calls, and
expressions that evaluates to a single value. The resulting single value can be a number, a
string, a Boolean, or a special value (null, undefined, Infinity, or NaN); that is, the result of
any expression is always one of JavaScript's defined data types or special values. Here are
some examples:

3+ 7
3+7+ 10 +""
"Dr." + " " + "Pepper”

The first expression adds the numbers 3 and 7 and evaluates to 10.

The second expression adds the numbers 3, 7, and 10 and an empty string and
evaluates to " 20", which is a string.

The last expression adds three strings together and evaluates to " Dr. Pepper".

What Is a Statement?

While an expression is any valid set of literals, variables, operators, function calls, and
expressions that evaluates to a single value, a statement, on the other hand, is any set of
declarations, method calls, function calls, and expressions that performs some action. The
possible results of a JavaScript statement are infinite. Here are some examples:

var num= 1
docunent.wite("hello")

The first statement above declares a variable named numand initializes it to the value of 1.
The second statement performs the action of writing “hello” to the document.

Expressions vs. Statements

Statements often contain expressions that have to be evaluated before the specified action
can be performed. For instance:

docunent. wite("Sum ", 3 + 7, "
")

The first statement above has to evaluate the expression “3 + 7” before it can convert it to a
string and write the result between the strings “Sum: “ and “
". The statement performs
several actions:

2 Tt evaluates the expression “3 + 7.”

2 It wrote the string “Sum : “.

106 = Chapter Four Expressions and Statements JavaScript Data Types

2 Tt converted the number 10 to a string and wrote that (10 was the result of evaluat-
ing the expression “3 + 77).
2 Finally, it wrote the string “
".

Here’s another example of a statement that has to evaluate an expression before it can
perform its intended action:

total =1 + 2

This statement first had to evaluate the expression “1 + 2” before it could assign it to
total.

JavaScript has the following types of expressions. Notice that they correspond to the
three primitive data types supported by JavaScript that we discussed in Chapter 3.

2 Number—evaluates to a number, for example, 15, 7. 57, or - 3. 145

2 String—evaluates to a character string, for example, " Jane", " Hel | 0", or

" 9455"
25 Boolean—evaluates tot rue or f al se

This makes sense when we consider that every expression evaluates to a single value and
that all JavaScript values can be classified as one of the three primitive data types or one of
the special values null, undefined, Infinity, or NaN.

What Is an Operator?

Operators are the workers in expressions. They come primarily in two flavors: unary and
binary. A unary operator performs work, or operates, on one operand, whereas a binary
operator operates on two operands. Table 4.1 provides some examples.

Operator Flavor Syntax Examples
unary oper and oper at or or -88
oper at or oper and count++
'flag
binary oper and oper at or oper and 7+8

numl < num?2

Table 4.1 Operator Flavors

Types of Operators

The JavaScript language supports many operators. They are easily organized into five
categories:
2 String operators—those operators that work on strings. There are only two.
2 Arithmetic operators, also known as mathematical operators—those operators
that perform mathematical computations.

Concatenation, the String Operator 2 107

> Assignment operators—those operators that assign a value to a variable, object, or
property.

2 Comparison operators—those operators that compare two values or expressions
and return a Boolean value indicating the truth of the comparison.

2 Logical operators, also known as Boolean operators—those operators that take
Boolean values as operands and return a Boolean value indicating the truth of the
relationship.

In addition to these five categories of operators, JavaScript supports one special
operator, the conditional operator. The conditional operator is the only operator that has
three operands. We'll discuss it in more detail later. For now, let’s start with string operators
and work through them all from there.

Concatenation, the String Operator

There are really only two string operators: the concatenation operator (+) and the concatena-
tion by value operator (+=). The first concatenates two strings together. Thus, the operation

"Greetings, " + "Earthlings"
evaluates to the string

"Greetings, Earthlings"
An equivalent operation using variables is

var salutation = "Greetings, "
var recipient = "Earthlings"
salutation + recipient

The last statement evaluates to
"Greetings, Earthlings"
The second string operator, concatenation by value (+=), concatenates the string on the

right side (or the value of a string variable) to the string value stored in the variable on the
left side, then assigns the result back to the left operand variable. Here’s an example:

var greeting = "Geetings, "
greeting += "Earthlings"

While there are only two
string operators, there are
many string methods. We'll

The first statement declares a variable named greeting
and initializes it to the string “Greetings, ”.

The second statement concatenates “Earthlings” look at string methods in
onto the value contained in greeting. So the variable detail in the next chapter:
greeting now evaluates to Chapter 5.

3
e]
@
[$]
e
@
4
(O]
<8}
o

"Greetings, Earthlings"
Cool, huh?

108 = Chapter Four Expressions and Statements

A common use of this operator is to pile a bunch of HTML statements into a single
string for easy writing to a pop-up window. While we're not ready to tackle pop-up windows
just yet, we can see how easy it is to cram a bunch of HTML into one tiny little variable.

1 <! doctype html public "-//WBC//DID HTML 4.0 Transitional//EN'>

2 <htm >

3 <head>

4 <title>Script 4.1: Using Concatenation By Value</title>

5 <script |anguage="JavaScript" type="text/javascript"><!--

6 var docContents = ""

7 /-->

8 </script>

9 </ head>

10 <body>

11 <script |anguage="JavaScript" type="text/javascript"><!--

12 /'l now you generate the custom content, maybe from values of form
13 /1 fields or other operations performed on the page

14 docContents += "<hl>Dynam cally generated page content.</h1>"

15 docContents += "<p>More dynamically generated page content.

16 docContents += "Still nore dynanmically generated page content.</p>"
17 docContents += "<p>Yet nore dynamically generated page content.</p>"
18

19 /1 here you would create a new wi ndow,

20 /1 you'll learn howin Chapter 11

21

22 docunent . wi te(docCont ents)

23 Il-->

24 <[script>

25 </ body>

26 </htm>

Script 4.1 Using Concatenation by Value

Run the code and check out the results:

3 Yool 4 1: Lhing Coecatenalien by Yalus - berresei inlemel Explerer
Hi B Wes Fpemin Tedi Hel Ir
5 H
Kt v 3 m] (2] 0 e [ol VI o B

Dynamically generated page content.
Mo o i ally geamialed juds Codiend TUE pacers diveiel iy gvebvited @ age Caalie

Firl mor dyneee aiy peesrsis d page conimk

] Lt o By L

Figure 4.1 Results of Script 4.1

Arithmetic (Mathematical) Operators 2 109

JavaScript supports only the two string operators s
just discussed. Attempts to perform mathematical '® You'll learn how to create
operations (other than + and +=, which are technically £ pop-up windows and write
string operators when theyre used with strings) on _i: to them dynamically in
strings that cannot be converted to numbers result in Y Chapter 11.
NaN. Let’s examine arithmetic operators now. o

Arithmetic (Mathematical) Operators
Arithmetic operators, that is, operators that perform mathematical operations, should be
quite familiar to you. After all, you've been using them since grade school. Because theyre
so self-explanatory, rather than describe each one in detail, here’s a handy chart that
describes each operator complete with an example and its name.

Note that all arithmetic operators work on numbers and result in a number. Division
by zero results in the numeric value | nf i ni ty. In some older browsers, division by zero
may result in undef i ned or NaN; it depends on the browser.

Operator Name What It Does Flavor Example Result
+ plus Adds the two operands binary 7+5 12
minus Subtracts the right binary 7-5 2
operand from the left
operand
multiply Multiplies the two binary 7*5 35
operands
/ divide Divides the left operand binary 7/5 1.4
by the right operand and

returns the quotient

% modulus Divides the left operand binary 7%5 2
(remainder) Dby the right operand and
returns the remainder

negation Negates the operand unary -7 -7
assume x=7
++ increment Adds 1 to the operand unary ++x 8 (before
assignment)
X++ 7 (before
assignment)
8 (after

assignment)

110 = Chapter Four Expressions and Statements

assume x=7
- decrement Subtracts 1 from the unary = -X 6 (before
operand assignment)
X-- 7 (before
assignment)
6 (after
assignment)

Table 4.2 Arithmetic Operators

OK, so maybe a few of them do need a little explanation. For instance, what is this
modulus operator? I don't remember that one from grade school.

The modulus operator is a remainder operator, that is, it performs division, throws the
quotient away, and keeps the remainder. Thus,

5 %3
evaluates to
2

because 3 goes into 5 one time with a remainder of 2.
Let's try another:

9 %3
evaluates to
0

because 9 divided by 3 equals 3 with a remainder of 0.
One more:

4.5 % 2

evaluates to
.5

because 2 goes into 4.5 two times with a remainder of .5.

See how that works? It takes a little braintwisting, but not too much.

The increment and decrement operators also require special mention. While
incrementing and decrementing are simple in themselves—incrementing adds 1,
decrementing subtracts 1—these operators can work pre-evaluation or post-evaluation
when used in conjunction with an assignment operator.

Either way, pre- or post-evaluation, the operation is performed, that is, the operand is
incremented or decremented. However, if an assignment is involved, the value actually
assigned will vary according to which side of the operand the increment or decrement
operator is placed. To explain this, let’s start with a few variables initialized to zero:

Assignment Operators = 111

1]
o

var countA
var countB
var nuni = 0
var nun 0

1
o

Now let’s use a pre-increment operator. You can tell it's a pre-evaluation operator
because the operator precedes the operand.

numl = ++count A

Because this statement used a pre-evaluation increment operator, countA is incremented
before the assignment. So nunil evaluates to 1:

document.write("nunil: ", nunl, "
")

Now let’s try a post-evaluation increment operator. Post-evaluation operators are placed
after the operand. They don't execute until after the rest of the statement has executed, just
before the next line of code.

nun2 = count B++

Because this statement used a post-evaluation increment operator, count B doesn’t get
incremented until after the assignment is made to nun®. So nun® evaluates to 0, but
count B holds the value of 1 after the statement is executed:

docunent.wite("nunm2: ", nunR, "
")

docunent.wite("countB: ", countB, "
")

If this seems a bit confusing, don’t worry. Most of the time, it isn't an issue. Only when an
assignment is involved do you need to look closely at it and determine what it is that you
want to accomplish. In fact, you may want to avoid using increment and decrement
operators in this fashion altogether just because it is confusing. It's safer to use them alone,
on a line by themselves, to either increment or decrement a variable; then perform your
assignment on the next line. This makes your code easier to read and eliminates the
guesswork.

After you've learned more about assignments and assignment operators, reread this
section; it may all seem clearer then.

Assignment Operators

As with arithmetic operators, assignment operators should seem pretty straightforward. In
essence, every assignment operation either initializes or changes the contents of the
variable listed on the left side of the operator. Remember my Cup from Chapter 3? Let’s
update its contents a few times to get a better picture of how assignment operators work.
For instance, the statement

myCup = "I enpnade” Eﬁ

112 X Chapter Four Expressions and Statements

changes the contents of my Cup so that my Cup now holds lemonade. If my Cup had not yet
been assigned a value, the above statement would initialize my Cup with “lemonade”;
otherwise, it replaces my Cup’s contents with lemonade. Because ny Cup is a variable, we
can also say that my Cup evaluates to lemonade. Remember, a variable always evaluates to its
contents.

The statement

nyCup += " tea" i

works a little differently. This statement adds tea to my Cup of lemonade so that my Cup now
holds both lemonade and tea—an excellent combination, especially on a hot summer day.

Of course we can, at any time, completely replace the contents of my Cup with some-
thing else by making a new assignment:

myCup = "ice water" %

This statement replaces the “lemonade tea” in my Cup with “ice water”.

While we've been using strings to illustrate how assignment operators work, most of
the assignment operators listed here, all but equals (=) and add by value (+=), work only on
numbers; += also works on strings and = works on any data type. Here’s a list of
JavaScript's assignment operators:

Operator Name Examples Is EquivalentTo Means Applies To
= equals X=y x gets the value of y any data
x=7 x gets the value of 7 type

+= add by X +=y X=X+Y x gets the value of x +y ~ numbers
value X+=5 X=X+5 x gets the value of x+ 5 and strings

= subtract X-=y X=X-Y x gets the value of x—y ~ numbers
by value x-=7 X=x-7 x gets the value of x - 7 only

= multiply x=y X=x*y x gets the value of x *y ~ numbers
by value x*=5 Xx=x*5 x gets the value of x * 5 only

/= divide X /=y X =X[y x gets the value of x/y numbers
by value x[=7 X =x/7 x gets the value of x/7 only

%= modulus x %=y x=x%y x gets the value of x %y numbers
by value X %=5 Xx=x%5 x gets the value of x % 5 only

Table 4.3 Assignment Operators

Comparison Operators 2 113

Comparison Operators
Comparison operators should also look familiar to you: like arithmetic operators, you've
been using them since grade school. Comparison operators allow you to compare two
values or two expressions of any data type. Usually, the two items being compared are of the
same data type, so we're comparing apples to apples. It doesn't make much sense to
compare apples to oranges. The result of a comparison is always a Boolean truth value: true
or false.

Here’s a list of JavaScript comparison operators:

Operator Name Description Example Example
(assume: x=7, y=5) Result
== is equal to Returns true if the operands X ==y false
are equal
I= is not equal to Returns true if the operands xl=y true

are not equal

> is greater than ~ Returns true if the left X>y true
operand is greater than the
right operand
>= is greater than ~ Returns true if the left X>=y true
or equal to operand is greater than or

equal to the right operand

< is less than Returns true if the left X<y false
operand is less than the
right operand
<= is less than Returns true if the left X<=y false
or equal to operand is less than or

equal to the right operand

=== is equivalentto Returns true if the X ===y false
operands are equal and of
the same type

l== is not Returns true if the xl==y true
equivalent to operands are not equal
and/or not of the same type

Table 4.4 Comparison Operators

JavaScript often performs conversions for you when you do comparisons of strings and
numbers. For instance, should you compare the following:

== "g"

114 = Chapter Four Expressions and Statements

the result is true. Why? After all, the left operand is a number and the right a string. In this
and all comparisons except “is equivalent to” (===) and “is not equivalent to” (! ==),
JavaScript assumes you are trying to compare similar

== data types and performs the conversions for you. In

‘T Control structures will be this example, JavaScript converted the string to a

L covered in detail in number in order to perform a meaningful comparison.
g Chapter 6. Comparison operators are often used in con-

3 junction with control structures to direct the flow of a
o program.

Logical (Boolean) Operators

Logical operations, also known as Boolean operations, always result in a truth value: true or
false. Perhaps the best way to illustrate logical operators is to use some English statements
and let you evaluate whether each statement is true or false.

The && (AND) Operator

Let’s first look at the && operator. In order for an AND (&&) statement to be true, both
sides of the statement (both operands) must be true. With that in mind, consider this
statement. Is it true or false?

You are currently reading Chapter 4 && this book is about
Vi sual Basic.

It's false. Why? Because while you are indeed reading Chapter 4, this is not a book about
Visual Basic. The second part of the statement, the right operand, is false, making the AND
(&&) statement false.

Let’s try another:

The subject of this book is JavaScript &% the author is Tina
Spain McDuffie.

The result:
true

Both sides of the AND (&&) statement are true, thus the statement is true.
Now let’s take a look at the OR (||) operator.

The || (OR) Operator

In an OR situation, only one side needs to be true in order for the statement to evaluate to
true. If both sides are true, the statement is still true. Only if both sides are false will an OR
operation evaluate to false. Here’s an example:

Thi s book is about JavaScript || this book is about Visual
Basi c

The Conditional Operator 2 115

The result:
true

The first part was true; so even though the second part was false, the overall statement is
true. Had we used the AND (&&) operator, the result would have been false.

The ! (NOT) Operator

Last but not least, we have the NOT (!) operator. For example:

This book is !Visual Basic.

results in

true

This book is not about Visual Basic, it's about JavaScript, so the statement is true.

The NOT operator is often used to see if the value of a variable is false or to determine
if an object doesn't exist. We'll see several examples of these uses throughout the book, after
we’ve covered control structures.

Following is a table listing each logical operator, its associated truth table, and an
example using that operator:

Operator Name Flavor Truth Table Example Result
(isJS=true, isC3=false)
&& AND binary Expression Result is]S && isC3 false
true & true true

true && false fal se
false & true fal se
false & false false

[OR binary Expression Result is]S || isC3 true
true || true true
true || false true
false || true true
false || false false

! NOT unary Expression Result lisC3 true
I'true fal se
I'fal se true

Table 4.5 Logical Operators

The Conditional Operator

The conditional operator is the only JavaScript operator that takes three operands. The result
of the operation is one of two values, based upon the evaluation of the condition. If the
condition is true, the first value is the result; if the condition is false, the second value is the
result.

116 = Chapter Four Expressions and Statements

The syntax is

(condition) ? Valuel fTrue : Val uel fFal se

You can use the conditional operator anywhere you would use a standard operator. For
example, try the following:

var age = 38

(age >= 18) ? "adult" : "mnor"

It evaluates to

“adul t"

Because the variable age holds the value 38, the condition, age >= 18, is true, so the
conditional statement evaluates to the first value listed, which is " adul t " . If the condition
had evaluated to false, then the statement would evaluate to the second value, " m nor" .
For example:

var age = 7

(age >= 18) ? "adult" : "minor"

results in
n m nor n

Cool, huh?

Special Operators

JavaScript supports several special operators that you should be aware of: del et e, new,
t hi s, typeof , andvoi d. Lets look at each of them in turn.

del et e

The del et e operator allows you to delete an array entry or an object from memory. You
need to know more about arrays and objects before you can see a good example of its use.
So we'll postpone an example until Chapter 7 when we talk about arrays.

new

Most JavaScript built-in objects like | mage and Ar r ay have a corresponding constructor
function already built into the language. Constructor is an object-oriented programming
(OOP) term that refers to a function that specifies how
to initialize a particular type of object when it is

You'll use the newoperator created. Constructor functions generally cannot be

to create images for an au- called directly. Instead, you use the special operator,
tomatic slideshow in new, in conjunction with the constructor function to
Chapter 8. create a new object and initialize it with its constructor.

aw
e
@®©
[}
e
@®
4
[}
[¢B)
o

Special Operators 2 117

For instance, the following JavaScript statement creates and initializes an | mage object in
memory:

var nmyPic = new | mage()

Note that, in this case, no parameters were provided to the | nage constructor func-
tion. While many constructor functions require parameters to help define an object, some
do not. In the case of the | mage constructor above, its built-in function definition provides
for the case of receiving no parameters. You can also, optionally, pass the image’s dimen-
sions, width and height, as parameters, in that order.

this

The t hi s operator is totally cool and can save you
loads of typing, which is always a popular feature with
programmers. The special keyword t hi s is a shortcut
way of referring to the current object. You need to
learn more about event handlers, forms, and other
objects before looking at a good working example, so

we’ll save a demonstration of it until that time. For
now, just file it away in your brain as a special operator.

You'll get to use this to
help perform form calcula-
tions and validations in
Chapters 12 and 13.

3
=]
@
(]
e
@
4
(O]
5]
o

t ypeof

As we saw in Chapter 3, the t ypeof operator lets you easily determine the current data
type of any variable. The result of a t ypeof operation is always a string indicating the
variable’s data type. Thus, possible values are " nunber ", "string", "bool ean”,
"obj ect”, and " undefi ned". See Chapter 3 for a working example of this useful
operator.

void

The voi d operator tells the interpreter to evaluate an expression and return no value.
That's kind of weird, huh? Why would you want to evaluate an expression and then return
no value? Well, actually it does come in handy when
you want to make sure your program takes no action
whatsoever in response to an event. In fact, we'll see
voi d in action in the very next chapter.

For now, let’s get back to our original discussion
about expressions and statements. Recall that an pseudo-protocol and an
expression is any valid set of literals, variables, opera- ond i ck event handler in
tors, function calls, and expressions that evaluates to a Chapter 5.
single value. A statement is any set of declarations,
method calls, function calls, and expressions that performs some action. Notice that twice
we referred to function calls. So what's a function?

You'll learn how to use the
voi d operator in conjunc-
tion with the javascript:

3
=]
@
(B}
e
@®©
X
b}
5]
o

118 = Chapter Four Expressions and Statements

What Is a Function?

A function is a block of predefined programming statements whose execution is deferred
until the function is “called.” A function is a predefined routine that doesn't execute until
you “call” it.

You call a function by invoking its name with any required or optional parameters. A
function parameter, also known as an argument, is a data value or data reference that you
can pass to the function to work on or use. Parameters make functions more useful and
flexible. For instance, you could define a gr eet Vi si t or function that would greet visitors
to a Web site. Here’s an example:

function greetVisitor() {
alert("Hello!")

}

To call it, you would invoke the function’s name:

greetVisitor()
That's pretty easy, huh?

Passing Parameters to Functions

Wouldn't the gr eet Vi si t or function be more useful if you could actually greet the
visitor by name? That's where function parameters come in. How about you give the
visitor's name, as a parameter, to gr eet Vi si t or so it can use that data when performing
its function, which is to greet the visitor by name. Here’s what your revised function might
look like:

function greetVisitor(visitor) {
alert("Hello, " + visitor + "I")

}

To call it, send the visitor’s name. You could've acquired the visitor's name in a variety of
ways: from a prompt, a form field, or even a cookie stored during a previous visit. In this
example, we’ll use a simple string.

greet Vi sitor("WebWnman")

When you call gr eet Vi si t or, the string “WebWoman” is passed to the variable
vi si t or . Here’s a picture of what happens:

greet Vi sitor("WebWman")

passed to gr eet Vi si t or function

WebWoman

visitor

The Order of Operations 2 119

Were the information stored in the f i r st Nane variable, the call might look like this:

greet Visitor(firstNane)

Here’s a picture:

WebWoman | “greet Visitor (firstNane) | VVebWoman

firstName visitor

We'll look more closely at how this works in Chapter 8.

Returning aValue from a Function

Another feature of functions is that they may optionally return a value. That is, they can do
some processing and spit out (return) a result. This feature makes functions even more
useful and flexible. For instance, let's say we need a function to find the area of a rectangle.
We'll provide the width and height; we want the function to return the area:

function cal cRectangl eArea(w dth, height) {
var area = width * height
return area

}

Here is one way to call it:

alert("The area of an 8x5 rectangle is: " + cal cRectangl eArea(8, 5))

The result:

IE The s of an B asobarghs i 40

You'll often use functions that return a value in expressions. As youll see in the next
section, the function call usually occurs first, returning some value that is then used in the
expression evaluation.

We'll look at functions in much greater detail in Chapter 8. For now, let's move on to
the order of operations.

The Order of Operations

When it comes to expression evaluation, it is essential to know which operations have
priority, that is, you need to know who gets to go first. For instance, what does the following
statement evaluate to?

4 +10/2* 3 - (1 +2) * 4

120 =&

Chapter Four Expressions and Statements

If you evaluated the expression left to right, giving each operator equal precedence,
4+10is 14
divided by 2 is 7
times 3 is 21
-1is20
+21is 22
times 4 is 88

Right? Sure, if that's how math really worked. But math doesn't work that way. So 88 is the
wrong answer. If you have any math background whatsoever, you're already screaming,
“No! No! No! That's not how it's done!” And you're right.
Mathematics has an established order of operations:
1. First you work the expressions within parentheses from the inside out.
2. Then you perform any squares, cubes, or other to-the-nth-ofs from left to right.
3. Then you multiply and divide from left to right.
4. Finally, you add and subtract from left to right.

Programming languages also have an order of operations. They must. There has to be
some established guideline that determines the order of precedence of each programming
construct. We saw how important the order of operations was when we worked with the
increment and decrement operators. The order of operations directly affected the results of
our assignments.

JavaScript's order of operations table is a little longer and more complex than the basic
mathematical outline shown above because it also has to factor function calls and such into
the equation. Still, the general concept is the same.

The following table describes JavaScript's order of operations. The bitwise operators
have been left out to make it simpler, since we won't be covering them in this book.

Order Description Operator(s)

1 Parentheses (work from the inside out) ()

2 Member of an object or an array []

3 Create instance new

4 Function call function()

5 Boolean NOT, negation, positive, increment, I - + ++ --typeof
decrement, typeof, void, and delete voi ddel ete

6 Multiplication, division, and modulus * [%

7 Addition, concatenation, and subtraction + -

8 Relational comparisons < <= > >=

The Order of Operations 2 121

9 Equality, inequality, equivalency, and === === l===
non-equivalency

10 Boolean AND &&

11 Boolean OR ||

12 Conditional expression ?:

13 Assignment = 4= -=*= [= O

Table 4.6 Order of Operations

Some of the descriptions in Table 4.6 refer to stuff we haven't covered yet, like function
calls and arrays. Don’t worry, all will become clear later. As you complete each new topic,
come back and take a look at Table 4.6 again and see how the new topic fits into JavaScript's
order of operations.

In the meantime, let’s apply the stuff we've learned so far. Let's go back to the expres-
sion we looked at earlier and see if we can arrive at the correct answer, which is 7, by
applying the correct order of operations step by step.

Original expression:

4 +10/2* 3 -(1+2) * 4
Any parentheses? Yes.
4 + 10/2 * 3 - 3 * 4 || evaluate parens

There are no arrays, objects, instance creations, or function calls (whatever they are), so we
can skip 2 thru 4. Any NOTs (!)? No. Any negative or positive signs? No. Any increments or
decrements? No.

Next is multiplication, division, and modulus. Any of those? Yes. Let's do them one at a
time:

4 + 5 * 3 - 3 *4 /] * and / left to right
4 + 15 - 12

Next is addition, concatenation, and subtraction. Any of those? There surely are. Let’s
do those one at a time too:

19 - 12 /1 + and — left to right
7
Looks like we're done. We didn't even get to comparisons, equality and inequality, Boolean
AND, Boolean OR, Boolean NOT, conditional expressions, or assignments.
The order of operations can have a dramatic effect on expressions and statements
involving both strings and numbers. Let’s explore a few expressions to see how:

7 +5 + "dollars"

122 X Chapter Four Expressions and Statements

According to Table 4.6, the addition and concatenation operators have equal prece-
dence. So, we evaluate the expression left to right. The result is

12 + "doll ars"
12 dollars /'l which is a string

Now let’s try it the other way:
"dollars " + 7 + 5
Concatenation and addition have equal precedence, so it’s left to right again:

"dollars 7" + 5 /1l add 7 to the string dollars
dollars 75 /1 we're still adding to a string

Because the first operand, " dol | ars ", is a string, the + operator is the concatenation
operator. So instead of adding 7, 7 is converted to a string and concatenated to the string
"dol | ars ".The same is true for the 5.

Summary

An expression is any valid set of literals, variables, operators, and expressions that evaluates
to a single value. A statement is any set of declarations, method calls, function calls, and
expressions that performs some action.

The JavaScript language is rich with operators that we can use in expressions, includ-
ing
String operators that work on strings.
Arithmetic operators, used for mathematical operations.
Assignment operators, used to assign a value to a variable or object property.
Comparison operators, used to compare two values or expressions.
Logical operators, used to determine the truth value of a Boolean expression.
The conditional operator, used to choose one of two values based upon the result
of a condition. The condition can be a comparison, a truth value, or the result of a
logical operation.

XXX K

The JavaScript language also supports several special operators:

del et e—used to delete an array element or object.

new—used to create new objects with a constructor function call.

t hi s—used to refer to the current object.

t ypeof —used to determine the data type of a variable, object property, object, or
special value.

2 Vvoi d—used to prevent an expression from returning a value.

XX

Expressions and statements sometimes include function calls. A function is a deferred
set of programming statements whose execution is deferred until the function is called.
Functions may optionally accept parameters and/or return a value. Those that return a
value are often used in expressions.

Exercises = 123

Like any other programming language or mathematical system, JavaScript has an
established order of operations to determine operator precedence.

Review Questions

1.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

VXN RN

What is an expression?

What type(s) of value can an expression evaluate to? Be specific.

What's a statement?

What's the difference between an expression and a statement?

What's an operator?

What string operators does JavaScript support?

What type of operators performs mathematical computations?

What does the % operator do?

What's the difference between the pre-increment operator and the post-increment
operator? How can using the wrong one affect your program?

Does it always make a difference to the result of your program whether you use a
pre- or post-increment or decrement operator?

Describe assignment operators. Name three assignment operators.

What type of value does a comparison operation result in?

What's the difference between = and ==?

What the difference between == and ===?

List and describe three logical operators.

What data type is returned by a logical operation?

What operator is the only one that takes three operands?

What's a function?

How do you call a function?

What's a parameter?

What does it mean to say that a function can return a value?

What is the purpose of having an order of operations?

Which comes first, multiplication or modulus?

Which comes first, a less than or equal to comparison or an inequality compari-
son?

Exercises

1.

Specify what each of the following expressions evaluates to:

2. 4+9 h. 6 +25/5
b.4+10-5+2 i. 4+5%3+7
c.4%2+7-1 j.2%4%8.6%2
d.7+4%2-1 k. 8/4 %2

e 3-2%6 1. 5% g

f. 49%2 * 98 m.2*4+”5"

g 1+4%2%*75 n. “4”-2

124 X Chapter Four Expressions and Statements

2. For each of the statements, in the following sequence, specify what myVar evaluates
to after the statement executes in JavaScript.

a. var nyVar = 5

b. nyVar *= 5

c. nyVar = nyVar % 6

d. myVar += "45"

e. nyVar = " Sant

f. nyVar = true

g. nyVar = (!nyVar && true)

h.nyvar = ((5 ==5) || (2 >=5)) || (1(6 >= 10))
inyVar = 6 * 2 + 10/5 - 5%

J-

nyVar = 6 * ((2 + 10/5) - 5%2)

3. Specify what each of the following expressions evaluates to. Assume that num1=8,
num?2=7, num3=-5, string1="8", and string2="7".

num3 ==num2

.numl <8

.numl <=8

. num?2 > 7

num3 < numl

. num?2 = num3

. string]l == num1

. string2 === num?2

. string2 < stringl

. numl < stringl

4. Specify what each of the following expressions evaluates to. Assume that
flag = false, isEmpty = true, validString=false, and validNum = true.

— = D50 _ 0 AN T

a. lisEmpty

b. flag

c. isEmpty && flag

d. validNum || validString

e. validString && lisEmpty
f. lisEmpty && validNum
5. Specify what values count and newCount hold after each of the following state-
ments, in order.
. var count =0
. count++
. newCount = count++
. —count
e. count %= newCount
6. Write a conditional statement that evaluates to “happy” if mout hCur ve is less
than 180 and “sad” if nout hCur ve is greater than or equal to 180.

oOn T

Scripting Exercises 2 125

7. Given the following function:

function greet(message, visitor) {

docunent.wite("<hl>", nessage, ", ", visitor,
"</ h1>")
}
a. Write the appropriate JavaScript to call the greet function so that it will write
“Hullo, Sam.”

b. Write the appropriate JavaScript to call the greet function so that it will write
“Greetings and Salutations, Wilbur.”

c. Write the appropriate JavaScript to call the greet function so that it will write
“Greetings, Earthlings.”

Scripting Exercises

Create a folder named assignment04 to hold the documents you create during this assign-
ment. Save a copy of the personal home page you last modified as home.html in the
assignment04 folder.

1. Examine the following script:

<script |anguage="JavaScript" type="text/javascript"><!--
var nunil = pronpt("Please enter a nunber: ", 0)
var nunR = pronpt("Please enter a nunber: ", 0)
var sum = nunil + nun®

docunent.wite("You entered: ", numl, " and "
nung, "
")
docunent.wite("Sum ", sum
[]-->
</script>

Try running it and enter two numbers when prompted. The script does not do
what was intended. Fix it so it does.

2. Write a script that prompts the visitor for two numbers, then displays the two
numbers and their sum, difference, product, quotient, and modulus in the docu-
ment. For instance, if the visitor entered 5 and 2, the results would display as
follows:

You entered: 5 and 2
Sum 7

D fference: 3
Product: 10
Quotient: 2.5

Modul us: 1

126 =&

3.

Chapter Four Expressions and Statements

Write a script that prompts the visitor for two values, then displays the two entries,
their data type, and the truth of some comparisons, including is equal to, is not
equal to, is equivalent to, is not equivalent to, is less than, is less than or equal to,
is greater than, and is greater than or equal to. For instance, if the visitor entered 5
and “2”, the results would display as follows:

You entered: 5 (nunber) and 2 (string)
== 27 false

1= 2? true

=== 27? false

== 27 true

< 2? fal se

<= 2? false

> 2? true

>= 27 true

o1 o1 o1 o1 o1 o1 OOl

. Write a script that prompts the visitor for three numbers, then calculates and

displays their average.

. Write a script that prompts the visitor for the number of hours he or she worked

that week and his hourly rate. Calculate and display the visitor’s expected gross pay
for that week. Don't forget that hours over 40 are paid at time and a half. Here’s
what the display should look like if the visitor entered 35 hours at $10/hour:

Total Hours Worked: 35

Regul ar Pay: 35 hours @ $10/ hour
Overtinme Pay: O hours @ $15/ hour
Total Pay: $350

$350
$0

. Create a new document named currency.html.

a. Look up the current exchange rates for converting U.S. dollars to three different
foreign currencies. You can look exchange rates up at http://www.x-rates.com/.

b. Write a script that will acquire an amount in U.S. dollars from the visitor and
display its equivalent in each of the foreign currencies whose exchange rate you
looked up.

c. Your output should look similar to this:

$55.78 in U S. Currency is equivalent to:
35.9870 GBP (British Pounds)

435. 084 HKD (Hong Kong Dol | ars)

542.516 MXN (Mexi can Pesos)

