chapter three

Data Types,
Variables,
and Literals

S8 S8 S8 S8 B

()
Y

b

very programming language needs to be able to
handle and manipulate data. JavaScript is no
different in this respect. Programmers need a

Too Oﬁen we f orget that means of inputting data, temporarily storing it,
modifying it, and outputting it. It helps if data can be
genius ce depends categorized by type as well: this is a number, this is a
string (text), etc.
upon the data within In this chapter, we'll
2 Look at the various data types and special
its reach, that values that JavaScript recognizes.
2 Define the terms “literal” and “variable.”
Archimedes could not 2 Sll))lecify how to declare and initialize a vari-
able.
2 Examine JavaScript’s variable-naming rules

have devised Edison’s and establish some acceptable naming

, , conventions.

inventions. Define “expression evaluation.”

See how being loosely typed makes it easy for
JavaScript to convert one data type to another.
Learn how to convert a variable from one data
type to another.

See how to determine a variable’s true data

type.

—Ernest Dimnet

K& KX

73

74 X Chapter Three DataTypes,Variables, and Literals

2 Examine why number, string, and Boolean are primitive data types, built-in
functions, and objects.

Let's get started.

JavaScript Data Types

JavaScript supports three primitive data types—number, string, and Boolean—and one
composite data type—ODbject. By “primitive,” I mean they can't get any simpler. By “compos-
ite,” I mean that it is made up of a combination of data, usually of various types. You know
that an object has properties that define and describe it and methods on which it can act.
Thus, an object is a composite of the data defining and stored in its properties and the data
defining its methods. In addition to these data types, JavaScript recognizes four special
values: nul | , undef i ned, NaN, and I nfi ni ty. Let's examine each of these data types
and special values in turn.

Number

A number is any numeric value, be it a floating-point number (float) such as 4.17 or -32.518
or a whole number (integer) like —55 or 187. For the most part, JavaScript does not distin-
guish between the two, although it is possible to convert a string specifically to an integer or
a float. More about that later.

JavaScript represents numbers using the eight-byte, floating-point, numeric format
standard established by the Institute of Electrical and Electronics Engineers, Inc. (IEEE).
Say that three times fast! What it means is that you can represent very large numbers up to
+1.7976931348623157x10°* and very small numbers down to +5.0x1032%. “Very large” is a
bit of an understatement, we're talking huge here; +1.79x10%* is bigger than a centillion! To
better wrap your mind around the size of this number, visit http://
mathworld.wolfram.com/LargeNumber.html for a list of large numbers and their English
word equivalents. I couldn’t find a word to describe a number as small as £5x10%%#, but I can
tell you that it is very, very tiny indeed. It is highly unlikely you'll need to reference a
number smaller than that.

When it comes to working with numbers in JavaScript, you're not stuck working with
the decimal (base 10) number system alone. JavaScript also recognizes and supports the
hexadecimal (base 16) and the octal (base 8) number systems and lets you enter integers in
those formats, as well as the normal decimal format. Because decimal is the most popular
and often used number system, to indicate a number in decimal, you simply write the
number as you normally would without a leading zero (0). Hexadecimal and octal are a little
different. To enter a number in hexadecimal, precede the number with 0x (zero x). For octal
numbers, use a leading zero (0). Here’s a summary. The examples in the following table all
evaluate to 127 decimal.

JavaScript Data Types 2 75

Number System Base Notation Example

decimal 10 Enter the number as a normal integer 127
without a leading 0 (zero).

hexadecimal 16 Enter the number as an integer with 0x7F or 0X7F
a leading 0Ox (zero x) or 0X (zero X).

octal 8 Enter the number as an integer 0177
with a leading 0 (zero).

Table 3.1 Specifying Integer Bases in JavaScript

JavaScript is also flexible about how you designate floating-point numbers. You can
write floating-point numbers in the usual way, as an integer followed by a decimal point
and a fraction expressed in decimal, or you can write them in scientific notation.

Method Notation Examples
normal Enter the number as a decimal integer followed 12000000
by a decimal point (.) and a fraction expressed in -7.35
decimal. .552
scientific notation Enter the number as a decimal integer followed 12E6
by an exponent indicator (E) and an integer that -.735E1
can be signed (preceded by a “+” or “-”). .552E0

Table 3.2 Specifying Floating-Point Numbers in JavaScript

So numbers are simply numbers. That’s easy. But what's a string?

String

A string is text, that is, any combination or string of letters, numbers, punctuation, etc.
Maybe that's where the name came from: it’s a string of characters. However it got its name,
a string is easily recognized because it is always contained within or delimited by quotation
marks. JavaScript allows you to use either double quotation marks or single quotation
marks, also known as apostrophes, to delimit strings. Here are some examples of strings:

"WebWonan"

"3.141592"

"Greetings, Earthling'
"ondick=alert('Hello, World)"

"2, 4, 6, 8, who do we appreciate?
"What\'s up?"

"Tina says, \"She who |aughs, |asts!\

Notice the odd backslashes in the last two examples? Why are they there? Because
quotation marks, both double and single, are special characters used by the JavaScript
language to delimit strings. You have to escape them in order to use them as part of a

76 X Chapter Three DataTypes,Variables, and Literals

string; that is, you have to preface each with a backslash character in order to escape its
special meaning to JavaScript. Look at the next to last example above. The apostrophe
(single quotation mark) has been escaped. If you were to write that string out in JavaScript
using the document’s write method,

docunent.wite("Wiat\'s up?")

the result would be
What's up?

The same is true for the last example, that is, the quotation marks in the string have been
escaped so that the statement

docunent.wite("Tina says, \"She who |aughs, lasts!\"")

results in

Ti na says, "She who |aughs, lasts!"

If you didn't escape the apostrophe and double quotation marks, you could get an error
when you run the code. For every opening single or double quotation mark, JavaScript
expects a corresponding closing quotation mark.

Many HTML attribute values must be enclosed in quotation marks. In fact, any HTML
attribute value that contains any character other than a number or a letter must be delim-
ited with quotation marks. Some older browsers do not recognize single quotation marks,
so it is a good habit to only use double quotation marks around HTML attribute values.
Because you often use JavaScript to write HTML statements, it is important that you know
how to escape quotation marks. Here’s another example, this time writing HTML:

docurment.write("WebWnan</ a>")

The hr ef attribute value in the code above contains a colon (:) and several forward
slashes (/) so it must be delimited by double quotation marks (an HTML requirement). The
result of the above statement is that the following HTML code is written to the document:

WebWonan</ a>

OK, so both single and double quotation marks have special meaning to JavaScript. Are
there any others you need to worry about? As a matter of fact, there are.

JavaScript Special Characters

The backslash character (\) itself has a special meaning to JavaScript. It escapes a character
from its special JavaScript meaning. The backslash, single quotation mark, and double
quotation mark are the only characters you need to worry about escaping. However, there’s
actually a whole list of escape sequences you can use in JavaScript. I've listed the most often
used sequences first.

Escape Sequence

JavaScript Data Types = 77

Character Represented

\u

Double quotation mark (“)

\' Single quotation mark or apostrophe (‘)

\\ Backslash (\)

\'n New line—causes following text to begin on a new line. Particularly
useful in alert message strings.

\ x HH The character with the Latin-1 encoding specified by two hexadeci-
mal digits, HH. The hexadecimal number must fall between 00 and
FF, inclusive. For example, \xA9 is the hexadecimal sequence for
the copyright symbol.

\ uXXXX The Unicode character specified by four hexadecimal digits, XXXX.
For example, \u0O0A9 is the Unicode sequence for the copyright
symbol.

\ XXX The character with the Latin-1 encoding specified by up to three
octal digits, XXX . The octal number must fall between 0 and 377,
inclusive. For instance, \251 is the octal sequence for the copyright
symbol.

\b Backspace

\ f Form feed

\'r Carriage return

\ 't Tab

Table 3.3 JavaScript Escape Sequences and Special Characters

In addition to numbers and strings, JavaScript supports Boolean data values.

Boolean (Logical)

A Boolean value is a truth value that specifies whether something is true or false. While
there are an infinite number of possible values for the string and number data types, there
are only two possible values for the Boolean data type: true and false. Notice the absence of
quotation marks around true and false. Some languages, like C, do not have a specific
Boolean or logical data type, as it is often called. Instead, they often use the integers 1 (true)
and 0 (false) to represent truth values. JavaScript, however, does recognize Boolean as a
distinct data type. You'll see how useful this data type is when you begin working with
comparison and logical operators in Chapter 4 and when you learn about control structures

in Chapter 6.

78 X Chapter Three DataTypes,Variables, and Literals

Object

An Object is a composite data type, that is, it does not hold just one primitive type of data
value, such as number, string, or Boolean. Instead it is composed of zero or more pieces of
data, each of which may be of a different basic data type. For example, an image’s Sr C
property is a string, whereas its Wi dt h property is a number and its conpl et e property is
a Boolean. We'll continue to discuss and use objects throughout this text. Chapter 16
provides details for creating your own custom objects. For now, just file it away as another
data type.

Special Values

In addition to the data types discussed above, JavaScript recognizes four special values:
nul | ,undefi ned, I nfinity,and NaN.

2 nul | is a special keyword that represents no value, nothing.

2 undefi ned is a special keyword indicating that the value has not been defined.
You'll run across this nasty value whenever you try to write out or work with a
variable that has been declared, but not initialized, and has never had a value
assigned to it. We'll define the terms variable, declare, and initialize in the next
section.

2 I nfinity is a numeric value representing infinity. You'll usually encounter it
when you perform mathematical computations that result in an infinite or
undefined value. For instance, divide any number by zero and you'll get
I nfinity. However, in really old browsers, you may get undef i ned or NaN
instead.

2 NaNis a special value indicating that the result is “not a number.” We'll look more
closely at it a bit later in this chapter.

To summarize, all data handled by JavaScript will be one of the above-listed primitive
data types—number, string, or Boolean—or one of the above-listed special values—nul |,
undefi ned, I nfini ty, or NaN. Every piece of data that you can work with, whether it be
a variable, a literal, an object property, or the result of an expression evaluation, is, in its
most basic sense, one of the following:

a number

a string

a Boolean

nul | (that is, it has no value)

undef i ned (that is, it has not yet been defined
itself or its value has not yet been assigned)
Infinity

NaN

XX KX K

Declaring Variables 2 79

Literal vs.Variable

What do these terms “literal” and “variable” mean? A literal is any value that can be ex-
pressed verbatim or literally, that is, a literal is a fixed value taken in its basic sense, exactly
as written. For instance, the number 10 is a numeric literal, whereas the word “Hello” is a
string literal. You use literals throughout your programs in calculations, to print words and
phrases on the screen, and much more.

While a literal is a fixed value, a variable is a symbolic name that represents a value that
can, and likely will, change or vary during a program’s execution. Physically, it is a storage
place in memory that you can access using a symbolic name that you choose when you
define or declare that variable. When you declare a variable, the JavaScript interpreter tells
the computer to set aside space in memory to hold the value of your variable.

You may think of a variable as a cup. Let's label the cup my Cup. Throughout its life,
nmy Cup may contain a variety of liquids. For instance, in the summer you may fill myCup
with lemonade, ice water, iced tea, or soda, and in the winter with hot tea, cocoa, or coffee.
The contents of my Cup vary according to your needs. Similarly, the contents of a variable
can vary according to the needs of your program. Whereas a literal has only one literal, fixed
value, a variable’s value varies.

Declaring Variables
In order to use a variable, you should first declare it and, preferably, initialize it; that is, you
should define its name and, optionally, assign it a starting value. Notice that I said “should.”
While it is good programming practice to declare and initialize a variable before using it in
your program, JavaScript does not require you to do so. By initializing it when you declare
it, you avoid the risk of errors that can result from attempting to evaluate an undefined
value.

To declare a variable, you simply type the special keyword var, followed by a space and
the name of your variable:

var nyVari abl e

The above variable declaration tells the computer to allocate space for myVari abl e. It
does not specify what type of data you intend to store in myVar i abl e, nor does it place a
value in the allocated space. It simply sets aside the space and labels it. At this point, the
value of nyVari abl e is undef i ned.

Here are three more examples:

var numnil
var firstNane
var isOn

You can also declare two or more variables at once in a single JavaScript statement: simply
separate them with commas. The above example could also be written

var numl, firstNane, isOn

80 X Chapter Three DataTypes,Variables, and Literals

Initializing Variables

To initialize a variable is to assign it a default or starting value. The best time to initialize a
variable is when you declare it. So how do you do that? Simple, you follow your declaration
with an assignment statement. An assignment statement is an operation that assigns a value
to a variable. The most often used assignment operator is = (equals). We'll look at more
assignment operators in Chapter 4. Here are some variable initialization examples:

var nunl = 37
var firstNane = "Ti na"
var isOn = fal se

To declare and initialize two or more variables in one fell swoop, simply separate them
with commas. The above example could also be written as

var nunml = 37, firstName = "Tina", isOn = fal se
You can also initialize a variable with the result of a method or function call:
var visitor = pronpt("Wuat\'s your nane?", "")

The above example first prompts the user for her name, then assigns the result of the
window prompt method to the variable vi si t or.

Not only is it considered good programming practice to initialize your variables when
you declare them, it is also good form to place all of your variable declarations at the
beginning of your program and to provide a short description for each variable in a com-
ment. For example:

var nunl = 37 /1l first number entered
var firstName = "Ti na" /]l user's first nanme
var isOn /1 indicates whether Java is

/1 enabl ed or not

Comments not only make your code more readable for other people, they also help you
quickly figure out what you did when you revisit your code six months or a year later.
Believe me, if you don't insert comments when you write the code in the first place, you'll
be cussing to yourself later when you have to decipher and modify your code.

Current versions of JavaScript do not require you to declare a variable before using it,
that is, you can introduce and use variables on the fly throughout your program. For
instance, in the middle of your program you could start using a variable called nunb, even
though you never declared it:

nunb = 99
docunent . write(nunb)

JavaScript will neither grumble nor complain. It will simply create your new variable,
nunb, and assign it the value 99. From that point on, you can use that variable in your
program. You can do it. However, I do not recommend that you do it. Declaring your

Variable-Naming Rules 2 81

variables before you use them not only shows forethought and helps you plan out your
program, but it also makes your code more readable and more easily modifiable. It's much
easier and quicker to change variable default values when they're all in one place: at the
beginning of your program. Also, when debugging, you won't have to hunt through a ton of
code just to discover what values your variables began with.

One more important point to consider: while current versions of JavaScript do not
require you to use the keyword var to declare a variable, future versions of JavaScript may.
So, have I convinced you to follow the conventions I've suggested yet? I hope so.

Variable-Naming Rules

When it comes to naming variables, JavaScript has a few rules that you need to keep in
mind:
2 Variable names may not contain any punctuation, except the underscore (_). Only
letters, numbers, and the underscore are valid characters in a variable name.
2 Variable names may not begin with a number. They must start with a letter or an
underscore (_).
> Variable names may not contain spaces. Thus if you want to use more than one
word as a variable name, then you need to mix the case (lastName), separate the
words with an underscore (last_name), or simply string them together eliminating
the space (lastname).
2 Reserved words may not be used as variable names. Reserved words are special
words that a programming language sets aside or reserves for its own use. Appen-
dix C contains a list of words JavaScript has reserved for its current and future
use.
2 Pre-defined object, property, method, and

built-in function names are also off limits, for % Personally, | prefer the first
example, docunent , wi ndow, f or m nane, < option, mixing cases. | find
src, i sNaN, etc. Consider them reserved GE) the underscore character
words. While you may, technically, sometimes £ difficult to type correctly: |
be able to implement them successfully, ®© end up with a dash as often
using pre-defined object, property, method, cesa as not.The mixed case is also
and function names as variable identifiers is © more readable than all lower
asking for trouble. Not only can it create case While mixed case is my
confusion for anyone trying to read your personal preference, you
code, it can also cause error messages, should choose a convention
generate undesired side effects or unintended that works best for you
results, or have other unforeseen conse- (within the rules, of course)

quences. and stick to it.

82 X Chapter Three DataTypes,Variables, and Literals

Rule Invalid Variable Names Valid Variable Names

No punctuation except underscore (_) first-name first_ name
last-name! lastName

May not begin with a number 1stName firstName
2be _2be
3rdNumber num3

No spaces allowed last name lastName

No reserved words case myCase
class class2
package zPackage

No object, property, method, or document theDocument

built-in function names form zForm

Table 3.4 JavaScript Variable-Naming Rules

JavaScript Is Case Sensitive

One last note about naming JavaScript variables: JavaScript is case sensitive. Thus, the
names Sitevisitor,SITEVISITOR siteVisitor,SiteVisitor,Sitevisitor,
and sl t evi si t or refer to six different variables. Remember this. It’s easy to overlook,
especially since you're used to HTML being case insensitive. For instance, say your program
needs to refer to a variable declared as follows:

var nyVariable = "G eetings!"

The correct dot notation to access the variable is

nmyVari abl e

The value of
MyVari abl e
on the other hand, is undef i ned. In the above example, there is no such variable named

MyVar i abl e; we named it myVar i abl e, and JavaScript is case sensitive enough to know
the difference even if HTML is not.

Evaluating Expressions: Just What Are You Really Saying?

Expression evaluation is closely related to data values and variables. To determine the value
of a variable, you have to assess, calculate, or evaluate the expression that declared it or was
later assigned to it. For instance, when you declare and initialize the variable num1

var nunml = 37

numil evaluates to 37. In JavaScript, a variable always evaluates to its value. The expression
on the right side of the equal sign, 37, assesses or evaluates to 37. The expression

Evaluating Expressions: JustWhat Are You Really Saying? 2 83

30 + 7

also evaluates to 37.

We're used to making such evaluations without thinking too much about it. In our
everyday language, we often use and evaluate expressions. For instance, we evaluate the
expressions “kitty,” “pussy cat,” “kitty cat,” “kit kat,” and “puddy cat” to mean “cat.” They're
all expressions for cat; they all mean or evaluate to cat.

In the next chapter, we’ll begin working a lot with expressions as we define the various
types of operators that JavaScript supports.

When a variable has not been assigned a value, it is considered unassigned and has the
value undef i ned. However, when that variable is evaluated, the results of the evaluation
vary depending on how the variable was declared, or not declared, as the case may be. If the
unassigned variable was never really declared formally using the var keyword, evaluating it
results in a runtime error. For instance, consider Script 3.1:

<htm >

<head>
<title>Script 3.1: Using an Undefined Variable</title>

</ head>

<body>

<script |anguage="JavaScript" type="text/javascript"><!l--
docurment . write(zVar)

[]-->

</script>

</ body>

</htm >

Script 3.1 Using an Undefined Variable

The variable zVar is never formally declared. Although its value is undefined because
it is never declared nor initialized, using it results in a runtime error.

Javascript Brroc: {ils:/ &) /sscipe Oi.heml, Lius 7

=War 1w not Sefaned.

PRI YRR

(i Compiaks Chria

Figure 3.1 Results of Script 3.1—Using an Undefined Variable

84

Chapter Three DataTypes, Variables, and Literals

On the other hand, if an unassigned variable were formally declared using the var
keyword, an evaluation of that variable would result in undefined or NaN. NaN means “not
a number.” Its use is explained in more detail in a later section of this chapter.

O© 00N Ul WN P

[
=

=
N

13

<htm >

<head>
<title>Script 3.2: Using a Defined Variabl e Wose

Val ue I's Undefined</title>

</ head>

<body>

<script |anguage="JavaScript" type="text/javascript"><!--
var zVar
docunent.wite(zVar)

[]-->

</script>

</ body>

</htm >

Script 3.2 Using a Defined Variable Whose Value Is Undefined

= Scripi 1.2 klmirg 4 Cwrlined Yarmbin Whase Value e Unerdined - Metrcaps

Fis [l S o Comarwss el
i +« 3 & - o < o 8 HES
Bagi Frtral e o T e R] Cpraie Ebnp
R e e x| e Rt
nciefined
I!-liuh [exzprmre: [ore I =| .I,‘l EI E

Figure 3.2 Results of Script 3.2—Using a Defined

Variable Whose Value Is Undefined

Runtime errors certainly are an unwanted side effect. They are a good argument for
always formally declaring variables. However, an evaluation of undefined can be just as
devastating to a program. For that reason, among others, it is considered good program-
ming practice to initialize all variables when you declare them.

DataType Conversions: From Numbers to Strings and Back Again 2 85

DataType Conversions:

From Numbers to Strings and Back Again

JavaScript is a loosely typed language. That means that you do not have to specify the data
type of a variable when you declare it or before you use it. In fact, you can actually initialize
a variable as a number, then later assign it a string value and still later a Boolean value. For
example, the following code is perfectly legal:

var guess = 37 /'l nunber
guess = "white" [l string
guess = true /1 bool ean
guess = "pink" [l string
guess = 22 /'l nunmber

Because of this feature, Netscape describes JavaScript as a “dynamically typed lan-
guage.” Being dynamically typed has its advantages. For instance, as the above example
shows, it is easy to change the data type of a variable on the fly. Simply assign a value of a
different data type to the variable.

It is also easy to convert from one data type to another. When a JavaScript expression,
involving the plus or concatenation operator, contains numbers followed by strings,
JavaScript automatically converts the numbers to string values before evaluating the
expression. For example:

7 + "up" /1 result: 7up
"hi" + 5 /] result hib

This is good to know. That means converting a number to a string is easy: just add an
empty string to it. For example:

var nunl = 85 // initialize numl as a nuneric: 85
nunit = nunml + "" /1 now nunl is a string: "85"

OK, so converting from a number to a string is easy: just add an empty string to the
number. But what if you want to go the other direction: convert from a string to a number?
Fortunately, JavaScript has that covered by two very useful built-in functions:
parsel nt () and parseFl oat ().

par sel nt () and parseFl oat ()

When working with Web pages, programmers often need to convert string values to
numbers. For instance, did you ever notice that HTML does not provide a number box form
element? It's true; HTML only provides a text box. Similarly, the wi ndow. pr onpt ()
method, which we discussed in Chapter 2, returns a string. So what if you want to perform
calculations on data entered in a prompt or text box? Type in the following code:

86 X Chapter Three DataTypes,Variables, and Literals

1 <htm >

2 <head>

3 <title>Script 3.3: Pronpts Return Strings</title>
4 </ head>

5 <body>

6 <script |anguage="JavaScript" type="text/javascript"><!--
7 var gty = pronpt("Enter the quantity you want to
8 order:", "")

9 var price = pronpt("Enter the price:", "")

10 alert("Your total is: " + qty * price)

11/ -->

12 </script>

13 </ body>

14 </htm >

Script 3.3 Prompts Return Strings

Open the document in your browser and provide a value for quantity and price when
prompted:

Eres T sy o waani o oo Erie e pocar

i ey

Cie] o | i] o

Figure 3.3 Prompts for Script 3.3

Assuming you didn’'t make any errors typing in the code, you'll see that, in this case,
JavaScript took care of converting the strings you entered in the prompt boxes into num-
bers before multiplying them.

DataType Conversions: From Numbers to Strings and Back Again P-4

= Spripn 3.5 Frompi Beins Srisge - Malscaps

1 4 &« 3 4 o 6 < & 8 D
s Rekal fom Comh howae P Secwh S S

wf " Bocknats) Lacetore (e As et El

| I Y

AN s

ol == 1 0% of X0 i kiﬂl B &

Figure 3.4 Final Results of Script 3.3

JavaScript recognized that the multiplication operator doesn't apply to strings, so it per-
formed the conversion for you in order to make the expression make sense, in this case.

Let’s try another example:

1 <htm >

2 <head>

3 <title>Script 3.4: Pronpts Return Strings</title>
4 </ head>

5 <body>

6 <script |anguage="JavaScript" type="text/javascript"><!--
7 var nunil = pronpt("Enter a nunmber:", "")

8 var nun2 = pronpt("Enter another nunber:", "")

9 alert("Sum " + (numl + nunR))

0 /1 -->

11 </script>

12 </ body>

13 </htm >

Script 3.4 Prompts Return Strings, Version 2

Run the script and enter some numeric values.

88 ¥ Chapter Three DataTypes,Variables, and Literals

1 =

Figure 3.5 Prompts for Script 3.4
What happened?

« B DR e {p fedeats Joe Sedes el

0000 omm 9

-&l-ﬂﬁl

ﬂ D ik, b ALY B | = =

Figure 3.6 Final Results of Script 3.4

This time JavaScript treated both numbers as strings! Why? Because you used the +
operator, a legitimate operator for strings, JavaScript did not convert the strings to num-
bers. Instead, it concatenated them.

When you used the multiplication (*) operator,

== JavaScript assumed you wanted to convert the strings
% You cannot use par sel nt to numbers and took care of it for you. After all, you
& to turn afloating-point num- can't multiply strings. However, when you used the +
“é ber into an integer. Neither operator, which means addition for numbers and
£ canyou use par seFl oat concatenation for strings, JavaScript had no way to tell
© to turn an integer into a what you wanted to do. So it treated both strings as the
S floating-point number. strings they were and concatenated them. Remember,
S parsel nt and you entered the numbers into a prompt text box.
par seFl oat only work on So how do you get around that? How do you
strings. Their purpose is to force JavaScript to treat the text box entries as num-

convert strings to numbers. bers? The answer is that you deliberately convert them

DataType Conversions: From Numbers to Strings and Back Again

to numbers using par sel nt () or par seFl oat () before performing a mathematical

89

operation.
Make the following changes to your script and run it, entering the same numbers as

before.

1 <htm >

2 <head>

3 <title>Script 3.5: Converting Text Entries to Nunbers</title>

4 </ head>

5 <body>

6 <script |anguage="JavaScript" type="text/javascript"><!--

7 var numl = pronpt("Enter a nunber:", "")

8 var nun® = pronpt("Enter another nunber:", "")

9 alert("Sum " + (parseFloat(numl) + parseFl oat(nunR)))

0 1 -->

11 </script>

12 </ body>

13 </htm >

Script 3.5 Converting Text Entries to Numbers

Now the program works as originally intended. It adds the entries together instead of

concatenating them.

~ Serigh 1 5: Caneeniong [uwd Erirm o Momdeny, - Hafcaps

| <« ¢« 34 o4 - B o & O B
Daci Makcad e Sanch Fisdcws Fanl ol Shap Siop
T wh Brdwats Lo Fie AR DL = A" s Finlmd

e N i N 4O R p)

Figure 3.7 Results of Script 3.5

You might also prompt the user for a number and convert it on the spot:

0 X Chapter Three DataTypes,Variables, and Literals

var numl = parseFl oat (pronpt("Enter a number:", """))

In the above statement, the visitor is first prompted for a number. Remember, prompt
receives the entry as a string data type. par seFl oat then converts the string into a
number. The result is then assigned to nuri.

NaNand i sNaN()

What happens if you try to convert a string that does not have a numeric equivalent into a
number? For instance, what value would numnl be set to in the previous example if the
visitor entered the string “ten”? Let’s look at another example and examine the results:

1 <htnm >
2 <head>
3 <title>Script 3.6: NaN</title>
4 </ head>
5 <body>
6 <script |anguage="JavaScript" type="text/javascript"><!--
7 var guess = "white"
8 docunent . wri t e(par seFl oat (guess))
9 Il -->
10 </script>
11 </ body>
12 </htm >
Script 3.6 NaN
The result:

£ Seripd 3.6 Ma - Metacaps

Fis [s o Cowsrcsis flely
“ - 2 4 - & <4 oF O TN
B Frtrmrl Hirms Eeich Fohmae Fad Crrwi Ehop
|l Bty b Lacator [l et B e x| ety Rend
Iiald

Figure 3.8 Results of Script 3.6

DataType Conversions: From Numbers to Strings and Back Again

NaN is a special keyword that indicates the value is
not a number. par seFl oat tried to convert guess into
a number, but guess held the value “white,” which is a
string with no numeric equivalent, so par seFl oat
returned NaN to indicate that it was not a number.

Since NaN s a special value, can you use it like the
special values undef i ned and nul | in comparisons?
Let’s try this bit of code and see:

<htm >
<head>
<title>Script 3.7: Evaluating
NaN</titl e>
</ head>
<body>
<script |anguage="JavaScript"

type="text/javascript"><!--
var guess = "white"
guess = parseFl oat (guess)

Script 3.7 makes use of an
i f statement. We'll cover
the i f control structure
thoroughly in Chapter 6.I've
included it here only to il-
lustrate the limitations of
NaN. For most students,
the i f statement is pretty
self-explanatory. After all,
you're always making deci-
sions based on some if con-
dition. For instance,“If today
is Sunday, do the laundry.”
Should this code confuse
you, please feel free to refer
back to it after you've read
all about control structures

33
(]
-
o
c
[¢B)
9
(%]

document . wite("CGuess: ", in Chapter 6.
guess, "
")
if (guess == NaN) /1 is guess equal to NaN?
document.wite("It is not a nunber", "
")
I o-->
</script>
</ body>
</htm >
Script 3.7 Evaluating NaN
The result:
Rt B | walikaniag Mad Meticage
Fin G s @ Cowursor s
i « 3 B - a4 <4 & O I
[R Has T AEicsps [TE] Ty L
:_ wl Boarwin) Locelon e Ao DM hei | (" whals Pt
Ty Hpde
E B D arerd | (o 'm M E .I E
Figure 3.9 Results of Script 3.7

92 X Chapter Three DataTypes,Variables, and Literals

But wait a minute, guess is not a number! So why didn't the program write “It is not a
number” when it checked to see if guess was equal to NaN (guess == NaN)?

Unlike nul | and undef i ned, the special keyword NaN cannot be used directly for
comparisons. JavaScript does, however, provide a way to see if an expression evaluates to
NaN. The built-in function to perform this check is—you guessed it—i sNaN() . With this
information in mind, let's modify the script and try it again:

1 <htnl>

2 <head>

3 <title>Script 3.8 Using isNaN</title>

4 </ head>

5 <body>

6 <script |anguage="JavaScript" type="text/javascript"><!--
7 var guess = "white"

8 guess = parseFl oat (guess)

9 docunent . write(guess, "
")

10 if (isNaN(guess)) /1 is guess not a nunber?
11 docunent.wite("It is not a nunber", "
")
12 /1 -->

13 </script>

14 </ body>

15 </htm >

Script 3.8 Using i sNaN

This time it worked as we intended:

o Seripd 1,8 Uhing miaf] - Kejerage
A B Yew G0 ConeemEe HSD

«d = 4 & =2 © o O IEX
A Bk Naesd [Tamch lHencaps Frer Casunly e
Tl Baokiha B Lotsborn [e AN w06 il

0 v Neiaind

Gy Tald
[t ix nct m nember

Figure 3.10 Results of Script 3.8

As you work with JavaScript, and especially with forms, you'll find these built-in
functions extremely useful.

DataType Conversions: From Numbers to Strings and Back Again 2 93

Other Built-in Functions for Data Type Conversions

Two other built-in functions, Nunber () and St ri ng() , can also assist with data type
conversions, as can the t oSt ri ng() method that is associated with every object.

The Nunber function is not associated with any particular object. It is a built-in
function like par sel nt () and par seFl oat (). Nunber () attempts to convert any
object or string passed to it into a number. If the object sent to it cannot be converted into a
number, the function returns NaN

Like the Nunber function, the St ri ng function is not associated with any particular
object. St ri ng() converts the value of any object into a string. It returns the same value
that the object’s t oSt ri ng() method would.

What DataType Am I?The t ypeof Operator

One more JavaScript feature that needs mentioning while we're discussing data types is the
t ypeof operator. The t ypeof operator lets you easily determine the current data type of
any variable. The result of a t ypeof operation is one of the following strings. It indicates
the data type of the variable.

2 “number”

2 “string”
2> “boolean”
2 ‘“object’

2> “undefined”

The syntax is

typeof (operand)
typeof operand

oper and is the variable, object, object property, string, or special keyword (null, undefined,
etc.) whose type you wish to know.

Note that the parentheses are optional, but it is considered good programming style to
use them.

For example:

<htm >

<head>
<title>Script 3.9: typeof</title>

</ head>

<body>

<script |anguage="JavaScript" type="text/javascript"><!--
var myVariable = "cat"
document . write("nyVariable\'s type is: ")
docunent.wite(typeof nyVariable, "
")

94 X Chapter Three DataTypes,Variables, and Literals

10 /1 -->
11 </script>
12 </ body>
13 </htm >

Script 3.9 t ypeof
The result:

- Seripd 19 iypeol - Feriscage
Fis [k S o Comarcsls flelp

i: - 3 ﬂ E. 8 a = 3 =y G- i Ml
Frkal Heows

, Bam Empch Pelmae Fow Sevmiy Shop
[il Bk Locebon [b T | A Wty At

my Vanable's b 15 rEmg

ER. Do EE SN

Figure 3.11 Results of Script 3.9

Here’s one that's a little more complicated and shows you more of the possible values
returned by the t ypeof operator. You're going to have to take line 10, which creates a

Dat e object, on faith for now and learn the details later in Chapter 10.

1 <htnl >

2 <head>

3 <title>Script 3.10: typeof Operator</title>
4 </ head>

5 <body>

6 <script |anguage="JavaScript" type="text/javascript"><!--
7 var nmyNum = 7

8 var myWord = "Ch, ny!"

9 var answer = false

10 var today = new Date()

11 var not Defi ned

12 var novValue = ""

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

DataType Conversions: From Numbers to Strings and Back Again

docurment . write("Variabl e: typeof </ b>
")

docurment..write("nmyNum ", typeof (nmyNum), "
")

docurment.write("nmyWrd: ", typeof (nyWrd), "
")

docurment . write("answer: ", typeof(answer), "
")

docunent.wite("today: ", typeof(today), "
")

docunment.wite("docunent: ", typeof(docunent), "
")

docunent. wite("notDefined: ", typeof(notDefined), "
")

docurment . write("noValue: ", typeof(noValue), "
")

docunent. wite("undefined: ", typeof(undefined),

docurment .write("null: ", typeof(null), "
")
docurment. wite("NaN. ", typeof(NaN), "
")

" <b|’ Sn)

docunment . write("undeclared: ", typeof(undeclared), "
")

docunent .. write("docunent. bgColor: ",
t ypeof (docunent . bgCol or),
")
-->

</scri pt>
</ body>
</htm >

95

Script 3.10 t ypeof Operator

Here are the results:

F: Seripd 1,10; bypesaf Opsrainr - Mebcape

IF =
wilf " Bockwusbn Jf Locatrs M S0AN et 0 Dol

Varakle: tvpeal
melfem rmumber
myWeord seng
meprr boalemn
|nday: chjecs
dosuarest ahject
rextDefired uredefmed
e Walue: sbmg
mdefned odefired
il ot

Fald megher
undeclued urdefmed
decamest bgColer sng

u“-l.l- [t | [

et ettt

Figure 3.12 Results of Script 3.10

% X Chapter Three DataTypes,Variables, and Literals

Notice that when a t ypeof operation is performed on a variable that has not yet had a
value assigned to it, the operation results in “undefined” (see lines 11 and 20 in Script 3.10).
“Undefined” is also the result of performing a t ypeof operation on a variable that has not
even been declared (line 27). Beware of performing a t ypeof operation on an object that
does not exist: the result is a nasty runtime error.

At ypeof operation on a variable whose value is null or on the keyword null results in
“object” (line 24). It seems like a strange response to me.

Interestingly, a value of NaN causes t ypeof to return “number” (line 25). Perhaps the
language realizes that you tried to convert the value to a number, and even though it wasn’t
possible to convert that value to a number, recognizes that you at least intended the value to
be a number. At least that's my theory.

Clearly, JavaScript makes data type conversions quite easy. Keep in mind, though, that
this can also present some potential pitfalls. Here are a few tips that might help you avoid
tripping over JavaScript's dynamic data typing:

1. Declare all variables before using them with the keyword var , preferably at the
beginning of your program.

2. Use descriptive names when defining your variables.

3. Initialize all variables and try to stick to the initial data type throughout your
program. Simply initializing all of your variables will help prevent that nasty
undef i ned value from popping up in your programs.

4. Describe each variable with a brief comment when you declare and initialize it.

5. When in doubt about whether JavaScript will convert a string to a number for you
or not, perform the conversion yourself. That way you'll know for certain that it is
taken care of, and you will be less likely to encounter side effects when your script
is run in different browsers.

6. Always convert form field entries and prompt box responses for which you expect
numeric input into numbers with par sel nt () or par seFl oat () and test the
result of these operations with i SNaN() before performing any mathematical
operations. You could also use Nunber () to perform the conversion, but it has
not been supported as long as par sel nt () and par seFl oat () have and will
not work in older browsers.

It’s an Object, It’s a Function,
and It’s a Primitive Data Type. Huh?

Take a look at your JavaScript object reference in Appendix A. Notice how Number, Boolean,
and String are listed as objects? But didn't we already say they were primitive data types?
Didn't we also point out that there are Nunber () and Stri ng() functionsas well? So
which are they? Primitive data types? Functions? Or objects? The answer is all three.

Number, string, and Boolean are indeed primitive data types. Every value of every
property, literal, and variable will boil down to one of these data types or the special values
nul | orundefi ned. Nunber () and String() are also functions that allow you to

Summary = 97

convert a string to a number and vice versa. Notice that these function names are capital-
ized and followed by parentheses, unlike most built-in JavaScript function and method
names.

Finally, Number, String, and Boolean are pseudo-objects. According to Netscape’s
JavaScript reference, they are object wrappers. What this means is that, for the purposes of
using methods associated with these pseudo-objects, a variable will temporarily become the
appropriate object for the duration of a method call, then the “object” will be discarded from
memory. In other words, the object wraps around the primitive data type, temporarily
making it an object so that you can use a method defined for that object on the primitive
data value. After you're done using the method, the object wrapper is stripped off and
discarded like a wet suit.

For example, the String object, in particular, has many useful methods defined for it
that allow you to manipulate, tear apart, put back together, uppercase, lowercase, strike out,
and even search strings. JavaScript allows you to use all of these String object methods on
ordinary strings. For example:

var response = "blue"
response = response.toUpper Case() /1 result "BLUE"

JavaScript automatically converts the string to a temporary String object. Then, after calling
the toUpper Case() method, it discards the temporary String object from memory.

Another useful side effect of JavaScript's treating ordinary strings as objects is that you
can use the | engt h property of the String object to determine the length of any string. For
example:

response. | ength /] result 4
Keep in mind, however, that ordinary strings are not really objects. We can verify that this is
true by using the typeof operator on the string we created:

t ypeof (response) /1 result string

If for some reason you need a genuine String Object, then you can create one using the
new operator.

var genuineString = new String("The real MCoy")

The same holds true for creating genuine number and Boolean objects. We'll discuss
the new operator in detail in Chapter 10 and string methods in Chapter 9. You can refer
back to this section then for a better understanding of what I just said.

Summary

JavaScript, like any other programming language, has a predefined set of data types and
special values that it is able to recognize and manipulate. JavaScript's primitive data types
include number, string, and Boolean. The two special data values JavaScript recognizes are
nul I, representing no value, and undef i ned, representing the value of a variable that has

98 X Chapter Three DataTypes,Variables, and Literals

been declared, but not yet initialized, or the value of a variable or property that simply has
not been defined. JavaScript also supports one composite data type: object.

JavaScript is a dynamically typed language. A programmer may easily change the data
type of a variable. Strongly typed languages like Java and C++ do not allow this. JavaScript
further facilitates dynamic typing by providing several built-in functions for converting data
types, including par sel nt (), parseFl oat (), String(), and Nunber () . In addition,
every object has a built-in t oSt ri ng() method for converting the object into a string. The
t ypeof operator lets you determine the data type of any variable, and the i SNaN() built-
in function lets you verify that a string converted to a number did indeed result in a number.

Finally, JavaScript defines Number, String, and Boolean objects that are really object
wrappers that allow you to treat variables with primitive data values as objects for the
purpose of using the methods and properties associated with those objects.

Review Questions
1. What does it mean to be a primitive data type?
. What is a composite data type?
. What three primitive data types does JavaScript support?
What composite data type does JavaScript support?
What special values does JavaScript support? List and describe each one.
What number bases can JavaScript recognize?
How do you differentiate between number bases in your code?
. What is a string?
. How does JavaScript recognize strings as strings?
. What symbols are used to delimit strings in JavaScript?
. What symbol does HTML prefer to delimit attribute values?
. What does it mean to “escape a character”? Provide an example.
. What's the difference between a literal and a variable?
. What does it mean to initialize a variable?
. What is an assignment statement?
. List five rules you must take into consideration when naming variables.
. Define the term “expression.”
. What does it mean when a programming language is “loosely typed”?
. How does Netscape describe JavaScript in terms of its typedness?
. What do the built-in functions par sel nt and par seFl oat do?
. Describe a scenario when converting a string to a number might be necessary.
. What does NaN mean? When are you likely to encounter it? Can you use itin a
comparison? Explain.
23. What does the t ypeof operator do?
24. What is an object wrapper?
25. List three tips that you would give a new programmer to help him avoid problems
with JavaScript's dynamic data typing.

RN VAW

N NN R s = e = e
N —m O VO 00NN VLA WN = O

Exercises -3

Exercises

1.

Which of the following are valid variable declarations or initializations? Explain
why each one is or is not valid. If an item is not valid, explain how you could
change it so that it is.

a. var bean_count = 39

b. my name = “Sam’

. var zipCode = document.myForm.zip.value

. var 1stName = “Sam”

. his-name = “Devan’

. var phoneNum = “(619)555-1212”

. var Tim'sNum = “(619)555-1213”

. var car make = “Nissan”

. var num3 = 88

var #99 =99

— = B 0 &N

. Evaluate each of the following expressions and specify whether the result is a

string, numeric, Boolean data type, or some special value.

a. 7+5 f.54+42+“up”

b. “7” +“5” g. parselnt(“7” + “5”)

c. “77+5 h. parselnt(“7”) + parselnt(“5”)
d. 7+“5” i. parselnt(“seven” +5)

e. “Hi“+5 j. parselnt(nine)

. List the result of each of the following typeof statements. Try to figure them out
without running them in a script. Then run each statement and see how you did.

a. typeof (-78)

b. typeof (“Sam”)

c. typeof (“50 ways to leave your lover”)
d. typeof(parseFloat(“50 ways to leave your lover”))
e. typeof (parselnt(“7up”))

f. typeof (true)

g. typeof (87 + “”)

h. typeof (86 + 99)

i. typeof (count)

j- typeof (null)

k. typeof (parselnt(“seven’)

1. typeof ()

. Write the appropriate code to convert each of the following to a string and then

back to a number.

a. 17 d. -87
b. 181.99 e. 0
c. -97.56

99

100 =&

5.

8.

9.

Chapter Three DataTypes, Variables, and Literals

Write the appropriate JavaScript expression to write each of the following decimal
numbers in hexadecimal. (Hint: They correspond to the color values allowed in the
browser-safe color palette.)

a. 00 d. 153
b. 51 e. 204
c. 102 f. 255

. Specify the data type of each of the following. Assume the Web document has the

following code defined before the statements:

<i ng nane="MPi cture" src="inages/ne.jpg"
wi dt h=100 hei ght =100>

a. var num = “7” h. var truth = false

b. var num2 =57.5 i. var myDoc = window.document

c. var happy j. var mylmage = document.MyPicture
d. var myPic k. var num3 = 87

e. MyPicture.src 1. var myNum = parselnt(“87”)

f. MyPicture.height m. var zNum = parselnt(“eight”)

g. var val = null

. Specify whether each of the following is a reserved word, a word currently used by

JavaScript, a word currently used by HTML, a word currently used by CSS, or a
word that is perfectly safe to use as a variable name.

a. background n. leftMargin
b. backColor 0. location
c. border p. map

d. checkBox q. max

e. client r. myVar

f. code S. hame

g. color t. number
h. count u. position

i. data v. radioButton
j. double w. selection
k. email x. single

1. font y. string

m. java z. visitor

Write two JavaScript statements, one to print your name and one to print your
nickname in quotation marks. Both your name and your nickname should appear
in the document on the same line, like this:

Tina Spain McDuffie “WebWoman”

Write a single JavaScript statement to display your favorite quote in a <blockquote>
tag, within quotation marks, and written in italics. Choose a fairly long quote that

Scripting Exercises 2 101

spans multiple lines. Preface it with “Person’s name says/said:”. Here’s an example
of what the output should look like:

Arthur C. Clarke said:
“Any sufficiently advanced technology is indistinguishable from magic.”

10. Write the appropriate JavaScript statement to write the following statement to the

document:

He said, “It's not whether you win or lose, but how you play the game that
counts & don’t forget that!”

Scripting Exercises

Create a folder named assignment03 to hold the documents you create during this assign-
ment. Save a copy of the personal home page you modified at the end of Chapter 2 as
home.html in the assignment03 folder.
1. Create a new document named favColorhtml. Write a script that
a. Prompts the visitor for his or her name and assigns it to a variable.
b. Prompt the user for his or her favorite of the following colors: red, green, blue,
magenta, yellow, teal, or silver.
c. Use those variables to set the background color of the document and to wel-
come the user by name.
2. Create a new document named sum.html. Write a script that
a. Prompts the user for two numbers.
b. Then displays their sum in the following format: 10 + 15 = 25
3. Modify the following script to both declare and initialize each variable on a single
line. Change the values to suit your own personal tastes.

<script |anguage="JavaScript" type="text/javascript"><!--

var
var
var
var
var
var
var

favDri nk

f avSoda
favFruit
favSal ad
favDi nner

f avDessert
f avCandyBar

favDrink = "Lenonade"
favSoda = "Dr. Pepper"

favFruit
f avSal ad

"orange"
"Ceasar Sal ad"

favDi nner = "Chicken-n-Bean Burrito at Teo Leo's"
favDessert = "Chocol ate Fudge Cake Sundae"
favCandyBar = "Butterfinger"

102 &

Chapter Three DataTypes, Variables, and Literals

I -->
</script>

Use the modified script to write the content for the Favorite Foods section in your
personal home page.
Modify home.html as follows:
a. In the head of the document, declare and initialize the following variables:
i. myName
ii. myNickname
iii. myGender
iv. myBirthday
b. Use these variables and JavaScript to complete the About Me section like this:
Name: your name here
Nickname: your nickname here
Gender: male or female
Birthday: your birthday here
c. For an extra challenge, and to make everything line up nicely, write the informa-

tion in a table. Use JavaScript to write all of the information including the tags
necessary to create the table.

5. Modify home.html as follows:

a. In the head of the document, declare and initialize the following variables:
i. myTitle
ii. myJobDescription
iii. myEmployer
Declare and initialize additional variables if you want.
b. Use these variables and JavaScript to complete the My Job/Work section like
this:
I'm a(n) <insert myTitle here> at <insert myEmployer here>. My duties
include: <insert myJobDescription here>.

or something similar. The idea is to create some variables and use them to write
information to the screen, a very common and important task performed with
JavaScript.

c. For an extra challenge, fancy your content up with HTML in your
document.write statements.

6. Modify home.html as follows:

a. Declare and initialize the following variables:
i. myName (if not already created)
ii. myEmail
iii. myPhone
iv. myWebsite

Scripting Exercises 2 103

b. Remove the words “Contact Info” from the <address> tag at the bottom of the
page and replace them with the following:
This site maintained by: <your name here>
Email: email@address.com Phone: (123)456-7890
<web site URL here>

or something similar. Use your variables and JavaScript to write the content.
Make your email address and the Web site URL links. To do so, you'll need to
use the nyEmai | and myWebsi t e variables twice each.

