Binary Number System
 


 

 

 

 

 

 

 

 

 

 

 

 

 


 

Microcontrollers operate using binary logic. These devices represent values using two voltage levels (0V for logic 0 and +5V for logic 1).

With two levels we can represent exactly two different values. These could be any two different values, but by convention we use the values zero and one.

 

These two values correspond to the two digits used by the binary number system. Microcontrollers employ binary because of this correspondence between the logic levels and the two digits used in the binary numbering system.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The binary number system works like the decimal number system with the following exceptions:


  • binary uses base 2
  • binary includes only the digits 0 and 1 (any other digit would make the number an invalid binary number)
     

Powers of Two


In a binary representation a particular power of two is either included in the sum or not, since the digits are either "1" or "0". In converting representations, it is convenient to have a table.











































Power of 2 10 9 8 7 6 5 4 3 2 1 0
Decimal 1024 512 256 128 64 32 16 8 4 2 1
Include?                      

Here is an 8-bit pattern: 0110 1001. If it represents a number (using binary positional notation), convert the notation to decimal by including the powers of two matching a "1" bit.


 0110 = 0 × 23  + 1 × 22 + 1 × 21 + 0 × 20
      = 0 + 4 + 2 + 0
      = 6


 
















































1011 = 1 × (10)11 + 0 × (10)10 + 1 × (10)1 + 1 × (10)0
  = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20
  = 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1
  = 8 + 0 + 2 + 1
  = 11  

























































Binary Decimal Notes
0000 0000 0  
0000 0001 1     20 = 1 = 21 - 1
0000 0011 3     21 + 20 = 3 = 22 - 1
0000 0100 4     22
0000 0111 7     22 + 21 + 20 = 23 - 1
0000 1000 8     23
0000 1111 15     24 - 1
0001 0000 16     24
0001 1111 31     25 - 1
0010 0000 32     25
0111 1111 ?     ?
1000 0000 128     27

(c) Shilpa Sayura Foundation 2006-2017