භාජ්‍යතාව
 


Divisability
සංඛ්‍යාවක් තවත් සංඛ්යාවකින් ඉතිරි නැතිව බෙදේද නැතිද යන්න අපට එදිනෙදා කටයුතු වලදී ඉතාමත් වැදගත් වේ.මෙම ගුණය භාජ්‍යතාව ලෙස හඳුන්‍වනු ලැබේ.

මෙහිදී 2න් හා 5න් බෙදෙන සංඛ්‍යා විශේෂයෙන් අපට හඳුනාගත හැක.

ඕනෑම සංඛ්‍යාවක අග ඉලක්කම (එකස්‍ථානයේ) 0,2,4,6,8 වේ නම් එම සංඛ්‍යාව 2න් බෙදේ.

ඕනෑම සංඛ්‍යාවක අග ඉලක්කම (එකස්‍ථානයේ) 0 හෝ 5 වේ නම් එම සංඛ්‍යාව 5න් බෙදේ.





















































භාජ්‍යතාවය නීති කිහිපයක්
A number is
divisible by:
If: Example:
2 The last digit is even (0,2,4,6,8) 128 is
129 is not
3 The sum of the digits is divisible by 3 381 (3+8+1=12, and 12÷3 = 4) Yes
 

217 (2+1+7=10, and 10÷3 = 3 1/3) No

4 The last 2 digits are divisible by 4 1312 is (12÷4=3)
7019 is not
5 The last digit is 0 or 5 175 is
809 is not
6 The number is divisible by both 2 and 3 114 (it is even, and 1+1+4=6 and 6÷3 = 2) Yes

308 (it is even, but 3+0+8=11 and 11÷3 = 3 2/3) No
7 If you double the last digit and subtract it from
the rest of the number and the answer is divisible by 7 or 0.

(Note: you can apply this rule to that answer again if you want)
672 (Double 2 is 4, 67-4=63, and 63÷7=9) Yes

905 (Double 5 is 10, 90-10=80, and 80÷7=11 3/7) No
 

8 The last three digits are divisible by 8 109816 (816÷8=102) Yes

216302 (302÷8=37 3/4) No

9 The sum of the digits are divisible by 9

(Note: you can apply this rule to that answer again if you want)
1629 (1+6+2+9=18, and again, 1+8=9) Yes

2013 (2+0+1+3=6) No

10 The number ends in 0 220 is
221 is not
11 If you sum every second digit and then subtract the other digits and the answer is divisible by 11 or 0 7392 ((7+9) - (3+2) = 11) Yes

25176 ((5+7) - (2+1+6) = 3) No

12 The number is divisible by both 3 and 4 648 (6+4+8=18 and 18÷3=6, also 48÷4=12) Yes

916 (9+1+6=16, 16÷3= 5 1/3) No

(c) Shilpa Sayura Foundation 2006-2017